Speech Recognation
Posted on: November 28, 2019, by : g3wgj
Speech Recognation

Speech Recognation

Speech Recognation
Speech Recognation
  1. PENGERTIAN SPEECH RECOGNITION

Speech Recognition adalah proses identifikasi suara berdasarkan kata yang diucapkan dengan melakukan konversi sebuah sinyal akustik, yang ditangkap oleh audio device (perangkat input suara).

Speech Recognition juga merupakan sistem yang digunakan untuk mengenali
perintah kata dari suara manusia dan kemudian diterjemahkan menjadi suatu data
yang dimengerti oleh komputer. Pada saat ini, sistem ini digunakan untuk
menggantikan peranan input dari keyboard dan mouse.

Keuntungan dari sistem ini adalah pada kecepatan dan kemudahan dalam penggunaannya. Kata – kata yang ditangkap dan dikenali bisa jadi sebagai hasil akhir, untuk sebuah aplikasi seperti command & control, penginputan data, dan persiapan dokumen. Parameter yang dibandingkan ialah tingkat penekanan suara yang kemudian akan dicocokkan dengan template database yang tersedia. Sedangkan sistem pengenalan suara berdasarkan orang yang berbicara dinamakan speaker recognition. Pada makalah ini hanya akan dibahas mengenai speech recognition karena kompleksitas algoritma yang diimplementasikan lebih sederhana daripada speaker recognition. Algoritma yang akan diimplementasikan pada bahasan mengenai proses speech recognition ini adalah algoritma FFT (Fast Fourier Transform), yaitu algoritma yang cukup efisien dalam pemrosesan sinyal digital (dalam hal ini suara) dalam bentuk diskrit. Algoritma ini mengimplementasikan algoritma Divide and Conquer untuk pemrosesannya. Konsep utama algoritma ini adalah mengubah sinyal suara yang berbasis waktu menjadi berbasis frekuensi dengan membagi masalah menjadi beberapa upa masalah yang lebih kecil. Kemudian, setiap upa masalah diselesaikan dengan cara melakukan pencocokan pola digital suara.

  1. SEJARAH SPEECH RECOGNITION

Biometrik, termasuk di dalamnya speech recognition, secara umum digunakan untuk identifikasi dan verifikasi. Identifikasi ialah mengenali identitas subyek, dilakukan perbandingan kecocokan antara data biometric subyek dalam database berisi record karakter subyek. Sedangkan verifikasi adalah menentukan apakah subyek sesuai dengan apa yang dikatakan terhadap dirinya.

Biometrik merupakan suatu metoda untuk mengenali manusia berdasarkan pada satu atau lebih ciri-ciri fisik atau tingkah laku yang unik. Biometric Recognition atau biasa disebut dengan Sistem pengenalan biometric mengacu pada identifikasi secara otomatis terhadap manusia berdasarkan psikological atau karakteristik tingkah laku manusia. Ada beberapa jenis teknologi biometric antara lain suara (speech recognition).

Metode Hidden Markov Model mulai diperkenalkan dan dipelajari pada akhir tahun 1960, metode yang berupa model statistik dari rantai Markov ini semakin banyak dipakai pada tahun-tahun terakhir terutama dalam bidang speech recognition, seperti dijelaskan oleh Lawrence R. Rabiner dalam laporannya yang berjudul “A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition”

Proses dalam dunia nyata secara umum menghasilkan observable output yang dapat dikarakterisasikan sebagai signal. Signal bisa bersifat diskrit (karakter dalam alfabet) maupun kontinu (pengukuran temperatur, alunan musik). Signal bisa bersifat stabil (nilai statistiknya tidak berubah terhadap waktu) maupun nonstabil (nilai signal berubah-ubah terhadap waktu). Dengan melakukan pemodelan terhadap signal secara benar, dapat dilakukan simulasi terhadap sumber dan pelatihan sebanyak mungkin melalui proses simulasi tersebut. Sehingga model dapat diterapkan dalam sistem prediksi, sistem pengenalan, maupun sistem identifikasi. Secara garis besar model signal dapat dikategorikan menjadi 2 golongan yaitu : model deterministik dan model statistikal. Model deterministik menggunakan nilai-nilai properti dari sebuah signal seperti : amplitudo, frekuensi, fase dari gelombang sinus. Sedangkan model statistikal menggunakan nilai-nilai statistik dari sebuah signal seperti: proses Gaussian, proses Poisson, proses Markov, dan proses Hidden Markov.

Suatu model HMM secara umum memiliki unsur-unsur sebagai berikut:

  • N, yaitu jumlah state dalam model. Secara umum state saling terhubung satu dengan yang lain, dan suatu state bisa mencapai semua state yang lain dan sebaliknya (disebut model ergodic). Namun hal tersebut tidak mutlak, terdapat kondisi lain dimana suatu state hanya bisa berputar ke diri sendiri dan berpindah ke satu state berikutnya, hal ini bergantung pada implementasi dari model.
  • M, yaitu jumlah observation symbol secara unik pada tiap statenya, misalnya: karakter dalam alfabet, dimana state adalah huruf dalam kata.
  • State Transition Probability { } -> ij A a
  • Observation Symbol Probability pada state j, { } () -> j Bb k
  • Initial State Distribution -> i p p

Dengan memberikan nilai pada N, M, A, B, dan p , HMM dapat digunakan sebagai generator untuk menghasilkan urutan observasi. dimana tiap observasi t o adalah salah satu simbol dari V, dan T adalah jumlah observasi dalam suatu sequence.

Baca Juga :